Army

Low-light night vision imaging and video capture

Night vision device utilizes a short-wave infrared (SWIR) camera to generate an image as a video signal that can be displayed on a monitor or transmitted remotely

Photonics

In the figure above, the internal components of the viewer are illustrated. The objective lens 32 is fastened to the lens holder 34. A SWIR detector array 44 is mounted to a frame which retains the detector, detector electronics, display electronics, and display panel. The eyepiece 28 is screwed into a rear end of the housing. A power supply electronics board is located below the detector and display assembly.

Conventional night vision goggles all use image intensification (I2) tube technology which multiplies ambient, visible, and near IR light several thousands of times allowing a user to see and operate in very low-light conditions. One shortcoming of I2 tube night vision devices is that they cannot generate an image as a video signal that can be displayed on a monitor or transmitted externally. Further, the devices are sensitive to too much light which can over saturate the I2 tube and prevent the user from seeing any scene detail. This problem is called “blooming” or a “halo effect.” What is needed is an alternative imaging device that utilizes wavelengths of the electromagnetic (EM) spectrum currently unused in military environments.

Army researchers have developed such a device operating as a direct-view, compact SWIR viewer-detector array sensitive to the visible, near IR, and SWIR regions.

An atmospheric phenomenon called night sky radiance emits five to seven times more illumination than starlight, nearly all of it in the SWIR wavelengths. Thus, with a SWIR camera and this night radiance – often called nightglow –  it is possible to see objects with great clarity on moonless nights. This allows more photonic radiation to be used to create an image. In addition, SWIR illumination can be used to aid the sensitivity of the SWIR device.

Photonic energy from a scene enters the objective lens and is focused onto the SWIR imaging detector. The detector’s electronics create a video signal of the scene and provide the video signal to the display electronics. The display electronics create an image from the signal and presents a visible image on the display panel.

This US patent is related to US application number 20170145167

Do you have questions or need more information on a specific technology? Let's talk.

Contact Us