METHODS OF TREATING FUNgal INFECTIONS

Applicants: Nancy Millenbaugh, San Antonio, TX (US); Jeremy Wesley Gleaton, Cleveland, OH (US); Dickson Kiprono Kirui, San Antonio, TX (US)

Inventors: Nancy Millenbaugh, San Antonio, TX (US); Jeremy Wesley Gleaton, Cleveland, OH (US); Dickson Kiprono Kirui, San Antonio, TX (US)

Assignee: United States of America as represented by the Secretary of the Navy, Silver Spring, MD (US)

Filed: Feb. 27, 2018

Related U.S. Application Data

Publication Classification

Int. Cl.
A61K 38/17 (2006.01)
A61P 31/00 (2006.01)
A61K 45/06 (2006.01)
A61L 15/44 (2006.01)

U.S. Cl.
A61K 38/1767 (2013.01); A61P 31/00 (2018.01); A61L 2300/252 (2013.01); A61L 15/44 (2013.01); A61L 2300/404 (2013.01); A61K 45/06 (2013.01)

ABSTRACT

The invention relates to methods of treating a fungal infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a composition comprising one or more antifungal peptides selected from the group consisting of BmKn2, dBmKn2, Kn2-7, and dKn2-7. Antifungal pharmaceutical compositions and dosage forms, including field-deployable dosage forms, comprising one or more of these antifungal peptides are also contemplated herein.

Specification includes a Sequence Listing.
Figure 1

Fluorescence Units

Time (h)

- dKn2-7, 100 µg/mL
- Melittin, 100 µg/mL
- dKn2-7, 3.13 µg/mL
- Melittin, 3.13 µg/mL
- Boiled Cells
- PBS
- Untreated Cells

Sensitivity

200 Salmi
Figure 5

Absorbance at 490 nm vs. Concentration (μg/mL) for CA2519.
Figure 7
METHODS OF TREATING FUNGAL INFECTIONS

CROSS REFERENCE TO RELATED APPLICATIONS

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 23, 2018 is named “NC105743nonprov_ST25.txt” and is 1.03 kilobytes in size.

FIELD OF THE INVENTION

[0003] The subject matter of the instant invention relates to methods of treating a fungal infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a composition comprising one or more peptides selected from the group consisting of BmKna2, dBmKna2, Kn2-7, and dKn2-7. Antifungal compositions comprising one or more of these peptides are also contemplated herein.

BACKGROUND OF THE INVENTION

[0004] Fungal infections are difficult to eradicate and can rapidly evolve into invasive and/or systemic disease. These infections require long treatment durations and are associated with high morbidity and mortality, especially in certain populations such as immunocompromised, neonate, and burn patients. Species of Candida are the most common cause of fungal infections, and invasive candidiasis has reported mortality rates of 14-70% (Maucher, C., et al., Front. Microbiol. 2012, 3:193). In addition, interaction of Candida albicans with bacteria in polymicrobial wound infections results in increased virulence compared to monomicrobial infections. Co-infection with Staphylococcus aureus and C. albicans in mice, for instance, causes a synergistic increase in virulence and mortality relative to infection with S. aureus alone. (Hamilton, J. R., et al., Infect. Immun., 1976, 14(4):982-9.)

[0005] Fungi are eukaryotes and thus existing antifungal therapeutics may attack similar molecular targets on mammalian cells, resulting in severe side-effects and dosing limitations. Moreover, the formation of biofilms by pathogenic fungal species may result in a significant decrease in susceptibility to conventional antifungal agents. These challenges are exacerbated by the rise of drug resistant Candida species, the limited number of clinically approved antifungals, and the low number of new antifungal drugs in the pipeline for pharmaceutical development. Thus, there currently remains a need for new antifungal agents and methods of treating fungal infections.

SUMMARY OF THE INVENTION

[0006] In a first aspect, the invention relates to methods of treating a fungal infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising one or more peptides selected from the group consisting of BmKna2, dBmKna2, Kn2-7, and dKn2-7. In one embodiment, the peptides comprise D-form amino acids. In another embodiment, the fungal infection is a planktonic or a biofilm fungal infection, or a combination thereof. In a particular embodiment, the biofilm fungal infection comprises a pre-formed biofilm. In another embodiment, the fungal infection is resistant to one or more conventional antifungal agents. In another embodiment, the fungal infection is a wound infection.

[0007] In another aspect, the invention relates to methods of treating a polymicrobial infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising one or more peptides selected from the group consisting of BmKna2, dBmKna2, Kn2-7, and dKn2-7. In one embodiment, the peptides comprise D-form amino acids. In a particular embodiment, the polymicrobial infection comprises a planktonic or a biofilm fungal infection, or a combination thereof. In a particular embodiment, the biofilm fungal infection comprises a pre-formed biofilm. In another embodiment, the polymicrobial infection comprises a fungal infection which is resistant to one or more conventional antifungal agents. In another embodiment, the polymicrobial infection is a wound infection.

[0008] In various embodiments of the above aspects, the methods of the instant invention may comprise administering the pharmaceutical composition alone, or in combination with a therapeutically effective amount of one or more additional pharmaceutically acceptable agents. In one embodiment, the one or more additional pharmaceutically acceptable agent is selected from the group consisting of an antimicrobial agent, an analgesic, a wound healing agent, a biofilm dispersal agent and a biofilm inhibitor agent. In a particular embodiment, the antimicrobial agent is an antifungal, antibacterial, or antiviral agent.

[0009] In yet additional aspects, the invention relates to anti-polymicrobial and anti-fungal compositions comprising one or more peptides selected from the group consisting of Kn2-7, dKn2-7, BmKna2, and dBmKna2. In a particular embodiment, the composition is a pharmaceutical composition comprising said one or more peptides. In a particular embodiment, said one or more peptides are present in an amount sufficient to treat a fungal infection in a subject in need thereof. In a particular embodiment, said amount is from about 6 μg/mL to about 5 mg/mL of said one or more peptides. In a particular embodiment, the pharmaceutical composition further comprises one or more pharmaceutically acceptable carriers, excipients or diluents. In particular embodiments, the pharmaceutical composition comprises one or more additional pharmaceutically acceptable agents. In one embodiment, the one or more additional pharmaceutically acceptable agent is selected from the group consisting of an antimicrobial agent, an analgesic, a wound healing agent, a biofilm dispersal agent and a biofilm inhibitor agent. In a particular embodiment, the antimicrobial agent is an antifungal, antibacterial, or antiviral agent.

[0010] In another aspect, the invention relates to dosage forms comprising a pharmaceutical composition of the instant invention. In one embodiment, the dosage form is formulated for topical administration. In a particular
embodiment, the dosage form is a wound dressing. In a more particular embodiment, the wound dressing is a field-deployable wound dressing.

[0011] In additional aspects, the invention also includes use of a composition of the instant invention for treating a fungal infection in a subject in need thereof, use of a composition of the instant invention in the manufacture of a medicament for treating a fungal infection in a subject in need thereof, and use of the compositions of the instant invention for use in treating a fungal infection in a subject in need thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 depicts the time-dependent release of calcine AM (in hours) from MYA2876 C. albicans cells treated with dKn2-7 or mellitin. Samples were analyzed via fluorescence spectroscopy using a Tecan Spark 10M microplate reader (Tecan U.S., Morrisville, N.C.), and results are presented in fluorescence units. Closed circles represent dKn2-7 100 µg/mL; closed squares represent mellitin 100 µg/mL; open circles represent dKn2-7 3.13 µg/mL; open squares represent mellitin 3.13 µg/mL; triangles represent boiled cells; upside down triangles represent phosphate buffered saline (PBS) alone without cells; diamonds represent untreated cells in PBS.

[0013] FIG. 2 depicts efficacy of dKn2-7 against planktonic C. albicans MYA 2876. Cells were treated with increasing concentrations of dKn2-7 in PBS for predetermined durations of 0-24 hours and then tested for viability using colony forming unit (CFU) assays. Data represent the average of two independent experiments with triplicate samples for each treatment condition. Black bars represent control; stippled bars represent 3.13 µg/mL dKn2-7, and hatched bars represent 100 µg/mL dKn2-7.

[0014] FIG. 3 depicts efficacy of BmKn2 (circles), dBmKn2 (squares), Kn2-7 (triangles), or dKn2-7 (inverted triangles) peptides against pre-formed C. albicans CA 494 biofilm following a 24-hour treatment with the antimicrobial peptides (AMPs). Biofilm viability was measured using the XTT assay with absorbance measured at 490 nm (Absorbance490). Each data point represents the average of three experiments performed in triplicate.

[0015] FIG. 4 depicts efficacy of BmKn2 (circles), dBmKn2 (squares), Kn2-7 (triangles), or dKn2-7 (inverted triangles) peptides against pre-formed C. albicans biofilm MYA2876 following a 24-hour treatment with the AMPs. Biofilm viability was measured using the XTT assay with absorbance measured at 490 nm (Absorbance490). Each data point represents the average of three experiments performed in triplicate.

[0016] FIG. 5 depicts efficacy of BmKn2 (circles), dBmKn2 (squares), Kn2-7 (triangles), or dKn2-7 (inverted triangles) peptides against pre-formed C. albicans biofilm CA2519 following a 24-hour treatment with the AMPs. Biofilm viability was measured using the XTT assay with absorbance measured at 490 nm (Absorbance490). Each data point represents the average of three experiments performed in triplicate.

[0017] FIG. 6 depicts efficacy of BmKn2 (circles), dBmKn2 (squares), Kn2-7 (triangles), or dKn2-7 (inverted triangles) peptides against pre-formed C. albicans CA526 biofilm following a 24-hour treatment with the AMPs. Biofilm viability was measured using the XTT assay with absorbance measured at 490 nm (Absorbance490). Each data point represents the average of three experiments performed in triplicate.

[0018] FIG. 7 depicts efficacy of BmKn2 (circles), dBmKn2 (squares), Kn2-7 (triangles), or dKn2-7 (inverted triangles) peptides against pre-formed C. albicans ATCC 64124 biofilm following a 24-hour treatment with the AMPs. Biofilm viability was measured using the XTT assay with absorbance measured at 490 nm (Absorbance490). Each data point represents the average of three experiments performed in triplicate.

[0019] FIG. 8 depicts time-kill assay results which confirmed the fungicidal activity of dKn2-7 against planktonic C. albicans MYA 2876 cultures. Cells were treated with increasing concentrations of dKn2-7 in RPMI 1640 media for pre-determined durations of 0-4 hours and then tested for viability using CFU assays. Each data point represents the average of three experiments performed in triplicate. In the figure, 0 µg/mL dKn2-7 (black bars), 3.13 µg/mL dKn2-7 (stippled bars), 25 µg/mL dKn2-7 (hatched bars), and 100 µg/mL dKn2-7 (straight line bars) are depicted.

[0020] FIG. 9 depicts time-dependent calcine AM release (over 4 hours) from MYA2876 C. albicans cells treated with 3.13 µg/mL dKn2-7 (open circles), 100 µg/mL dKn2-7 (shaded circles), 3.13 µg/mL mellitin (open squares), or 100 µg/mL mellitin (shaded squares) and assayed to test AMP-induced cell lysis. Planktonic MYA 2876 cells were loaded with calcine AM for 2 hours, washed to remove free calcine AM, and treated with various concentrations of dKn2-7 or mellitin in PBS. Melittin, a known lytic peptide, was used as a positive control. Data are presented as percent of total (100%) calcine AM release, which was determined by measuring calcine AM release from boiled cells. Cells treated with PBS alone were used as the vehicle control, and data from these samples are labeled as “Control” in the figure (triangles). Calcine AM liberated from cells was quantified by fluorescence spectroscopy (λex 485 nm; λem 530 nm). A greater release of calcine AM occurred after treatment with 3.13 µg/mL of dKn2-7 and mellitin compared to treatment with 100 µg/mL. This result is opposite to the response pattern in FIG. 8, and thus suggests concentration-dependent mechanisms of action for dKn2-7 and mellitin.

[0021] FIG. 10 depicts the hemolytic activity of BmKn2 (gray bars), dBmKn2 (outlined gray bars), Kn2-7 (hatched bars), and dKn2-7 (outlined open bars). Human red blood cells were incubated with the indicated peptides at various concentrations (g/mL) for 1 hour at 37°C. Hemolysis was then determined by measuring the absorbance at 490 nm. Melittin (black bars) is a known lytic peptide and was included to confirm assay performance. All data were normalized to the amount of hemolysis induced by 0.1% Triton X-100, the positive control. Data indicate that Kn2-7 and dKn2-7 exhibited extremely low hemolytic activity compared to the other peptides tested.

[0022] FIG. 11 depicts the stability of peptides in human serum. The stability of Kn2-7 and dKn2-7 in 25% (v/v) human serum in RPMI 1640 culture medium (hatched bars and straight line bars, respectively) and 100% RPMI 1640 culture medium (black bars and stippled bars, respectively) was evaluated over 24 hours using liquid chromatography-mass spectrometry (LC-MS). In 25% serum, dKn2-7 was present at significantly higher levels than Kn2-7 at both 4 and 24 hours, suggesting that the D-form is more stable against serum proteases.
While the specification concludes with the claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.

All percentages and ratios used herein are by weight of the total composition unless otherwise indicated herein. All temperatures are in degrees Celsius unless specified otherwise. All measurements made are at 25°C and normal pressure unless otherwise designated. The present invention can “comprise” (open ended) or “consist essentially of” the components of the present invention as well as other ingredients or elements described herein. As used herein, “comprising” means the elements recited, or their equivalent in structure or function, plus any other element or elements which are not recited. The terms “having” and “including” are also to be construed as open ended unless the context suggests otherwise. As used herein, “consisting essentially of” means that the invention may include components in addition to those recited in the claim, but only if the additional components do not materially alter the basic and novel characteristics of the claimed invention.

All ranges recited herein include the endpoints, including those that recite a range “between” two values. Terms such as “about,” “generally,” “substantially,” “approximately” and the like are to be construed as modifying a term or value such that it is not an absolute, but does not read on the prior art. Such terms will be defined by the circumstances and the terms that they modify as those terms are understood by those of skill in the art. This includes, at very least, the degree of expected experimental error, technique error and instrument error for a given technique used to measure a value. Unless otherwise indicated, as used herein, “a” and “an” include the plural, such that, e.g., “a pharmaceutically acceptable agent” can mean at least one pharmaceutically acceptable agent, as well as a plurality of pharmaceutically acceptable agents, i.e., more than one pharmaceutically acceptable agent.

Where used herein, the term “and/or” when used in a list of two or more items means that any one of the listed characteristics can be present, or any combination of two or more of the listed characteristics can be present. For example, if a composition of the instant invention is described as containing characteristics A, B, and/or C, the composition can contain A feature alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. The entire teachings of any patents, patent applications or other publications referred to herein are incorporated by reference herein as if fully set forth herein.

Karsch comprises the peptide BmKn2. BmKn2 is a 13 amino acid peptide having the sequence FI1GAR1L1R1K1F (SEQ ID NO. 1). Kn2-7, an experimental derivative of BmKn2, has the amino acid sequence F1K1R1A1L1R1K1F (SEQ ID NO. 2). These peptides reportedly have some antibacterial and antiviral activity. See, Zeng X C, et al., (2004) Peptides 25: 143-150; Cao et al., (2012) PLoS ONE 7(7): e50135.

[0028] The inventors have now discovered that BmKn2 and Kn2-7 peptides have anti-fungal activity. Specifically, as discussed in the Examples below, the inventors have discovered that the BmKn2 and Kn2-7 peptides (both “D” and “L” forms) have growth inhibitory, fungicidal, and anti-biofilm activity in in vitro models of Candida albicans. The inventors believe that this discovery is of particular and surprising clinical relevance since one of skill in the art will appreciate that not all antimicrobial peptides derived from scorpion venoms demonstrate antifungal activity. Thus, it is contemplated herein that these antifungal peptides may be used in compositions and methods for killing fungi, and/or inhibiting fungal growth, including but not limited to, pharmaceutical compositions comprising one or more of these antifungal proteins, and methods of treating fungal infections in a subject in need thereof, including, e.g., biofilms and/or planktonic infections in a subject.

[0029] The antifungal peptides disclosed herein may be obtained for use in the methods and compositions of the instant invention according to conventional methods. For example, the peptides may be routinely isolated from the scorpion Mesobuthus martensi Karsch, and/or synthetically produced using methods familiar to one of skill in the art. In addition, as discussed in detail in the below Examples, the inventors have also observed that when experimentally synthesized to comprise “D” form amino acids, the BmKn2 and Kn2-7 peptides have increased stability. Thus, in various embodiments of the methods and compositions of the instant invention, it is contemplated herein that the BmKn2 and Kn2-7 peptides may be synthetically produced using conventional methods to comprise all “D” amino acids (e.g., “dBmKn2” and “dKn2-7”), all “L” amino acids, or a combination of “D” and “L” amino acids. As understood herein, “Kn2-7 and BmKn2” refers to the peptides comprising “L” form amino acids or a combination of “D” and “L” form amino acids; as used herein “dBmKn2” and “dKn2-7” refers to the peptides comprising “D” but not “L” form amino acids. In a particular embodiment, the peptides comprise all “D” form amino acids.

[0030] In another embodiment, the peptides are free of protecting groups, and have free amino and carboxy termini. In various other embodiments, the peptides may comprise alternative unnatural amino acids including but not limited to, homo-amino acids, N-methyl-amino acids, alpha-methyl amino acids, beta 2 amino acids, beta 3-homo amino acids, and peptoids. As one of skill in the art will appreciate, routine single or multiple substitutions of peptide amino acids which do not appreciably impact the efficacy of the peptides are also contemplated herein, e.g., substitution of a positively charged amino acid like lysine with arginine.

[0031] In addition, it is contemplated herein that the peptides may be modified at the N or C terminus by conjugation to various things, e.g., targeting ligands such as antibodies to increase cell selectivity and reduce host cell toxicity; nanoparticles composed of metallic and non-metallic substances such as gold, silver, polymers, or silica; other nonmetal nanoparticles such as dendrimers; lipophilic groups such as cholesterol or vitamin E; aliphatic acids to increase antifungal activity; photosensitizers; or antifungal antibiotics. The peptides can also be immobilized onto various materials or surfaces, e.g., collagen matrices, or incorporated into coatings for surfaces or into biomaterials used for tissue matrices, catheters, and other medical or dental implants and devices.

[0032] In one aspect, the present invention relates to methods of treating a fungal infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a composition comprising one or more peptides selected from the group consisting of dBmKn2-7,
dBmKn2, Kn2-7 and BmKn2. In one embodiment, the BmKn2 and Kn2-7 peptides comprise “L” form amino acids, “D” form amino acids, or a combination of “D” and “L” form amino acids. In a particular embodiment, the peptides are dKn2-7 and dBmKn2, comprising “D” form amino acids. In a particular embodiment, the composition is a pharmaceutical composition.

[0033] Thus, in another aspect, the invention relates to pharmaceutical compositions which comprise one or more of these antifungal peptides, alone or in combination with one or more additional pharmaceutically acceptable agents, and in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents.

[0034] As understood herein, the term “pharmaceutically acceptable” is used to refer to a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism.

[0035] Examples of pharmaceutically acceptable excipients, carriers and diluents are familiar to one of skill in the art and can be found, e.g., in Remington’s Pharmaceutical Sciences (latest edition), Mack Publishing Company, Easton, Pa. For example, pharmaceutically acceptable excipients include, but are not limited to, wetting or emulsifying agents, pH buffering substances, binders, stabilizers, preservatives, bulking agents, adsorbents, disinfectants, detergents, sugar alcohols, gelling or viscosity enhancing additives, flavoring agents, and colors. Pharmaceutically acceptable carriers include macromolecules such as proteins, polysaccharides, polyalactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, trehalose, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Pharmaceutically acceptable diluents include, but are not limited to, water, saline, and glycerol.

[0036] As understood by one of skill in the art, the type and amount of pharmaceutically acceptable excipients, carriers and diluents included in the pharmaceutical compositions of the instant invention may vary, e.g., depending upon the desired route of administration and desired physical state, solubility, stability, and rate of in vivo release of the composition. For example, for administration by intravenous, cutaneous, subcutaneous, or other injection, a formulation is typically in the form of a pyrogen-free, parenterally acceptable pH and stability, and may contain an isotonic vehicle as well as pharmaceutically acceptable stabilizers, preservatives, buffers, antioxidants, or other additives familiar to one of skill in the art.

[0037] “Additional pharmaceutically acceptable agents” for use in the methods and compositions of the instant invention are familiar to one of skill in the art and include, e.g., a variety of commercially available active pharmaceutical ingredients, including but not limited to, additional antimicrobials such as antifungal, antibacterial, and/or antiviral agents discussed below.

[0038] In a particular embodiment, the fungal infection is a planktonic or a biofilm fungal infection, or a combination thereof. For example, it is contemplated herein that a wound may comprise biofilm-associated and loose or free fungal cells.

[0039] In a particular embodiment, the biofilm fungal infection comprises a pre-formed biofilm. As one of skill in the art will appreciate, therapeutic efficacy against a “pre-formed” biofilm indicates activity against an established biofilm culture versus activity against de novo biofilm formation (e.g., inhibition of biofilm formation). In another embodiment, the fungal infection is resistant to one or more conventional antifungal agents.

[0040] It is contemplated herein that infections caused by a wide variety of pathogenic fungi may be treated according to the methods of the instant invention, including fungal infections that may be resistant to one or more conventional antifungal agents. In a particular embodiment, fungi to be treated include, but are not limited to, pathogenic species such as Aspergillus; Blastomyces; Candida; Fusarium; Trichosporon; Penicillium; Coccidioides; Cryptococcus neoformans; Cryptococcus gattii; Histoplasma; Mucorales; Pneumocystis; Sporotrichus; Trichophyton, Microsporum, Epidermophyton, Exserohilum, and Cladosporium.

[0041] In a particular embodiment, the infection to be treated is a fungal infection, and/or a polymicrobial infection. As understood herein, a “polymicrobial infection” may comprise infection with one or more pathogenic fungi in addition to infection with one or more additional microbes, e.g., bacteria and/or viruses.

[0042] In a particular embodiment, the infection to be treated is a wound infection. As understood herein, a “wound” refers to external or internal tissue that has been incised, lacerated, perforated, abraded, burnt or otherwise degraded, and includes acute wounds, chronic wounds, as well as minor cuts and burns. In a particular embodiment, the wounds to be treated are cutaneous and/or subcutaneous wounds. As contemplated herein, the antifungal compositions and methods of the instant invention can be used to treat fungal infections, and thus promote wound healing.

[0043] As used herein, “treating,” “treatment”, and like terms encompass reducing the severity and/or frequency of symptoms, eliminate symptoms and/or their underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and improve or remediate damage. As understood herein, treating “a subject in need thereof” may encompass both prevention and treatment. Thus, in a particular embodiment, “treating” encompasses not only killing fungi (e.g., a planktonic or a biofilm fungal infection, or a combination thereof) but also inhibiting the growth and/or proliferation of fungi and/or inhibiting the formation, growth or maintenance of a biofilm comprising fungi.

[0044] As used herein, “a subject in need thereof” includes an animal, including but not limited to birds and mammals, suffering from and/or susceptible to one or more fungal infections, and/or a polymicrobial infection which comprises one or more fungal infections. Human beings are also encompassed in this term. In particular, subjects in need thereof include, but are not limited to, domesticated animals as well as non-human primates and human patients.

[0045] As used herein, one of skill in the art will appreciate that a “therapeutically effective amount” of a pharmaceutical composition of the instant invention is that amount necessary to achieve a desired pharmacologic and/or physiologic effect in a subject (by local and/or systemic action), e.g., killing or inhibiting fungal growth in the subject. Such amounts can be readily determined by one of skill in the art. For example, therapeutically effective amounts of a pharmaceutical composition may be gleaned by one of skill in the art in laboratory experiments, and through conventional dosing trials and routine experimentation. Therapeutically effective amounts of the pharmaceutical compositions of the instant invention may depend upon the age, weight, species (if non-human) and medical condition of the subject to be
treated, and whether the antifungal peptides are administered alone or in combination with one or more additional pharmaceutically acceptable agents, e.g., an antimicrobial agent, including but not limited to one or more additional antifungal agents.

[0046] As discussed above, it is contemplated herein that the anti-fungal peptides may be administered in various ways according to the methods of the instant invention, e.g., alone or in combination with one or more additional pharmaceutically acceptable agents, therapeutic treatments, or regimens, in order to enhance treatment efficacy. As one of skill in the art will appreciate, the type and amount of additional pharmaceutically acceptable agents, therapeutic treatments or regimens for use in the methods and compositions of the instant invention will depend upon the type of infection to be treated; e.g., an infected wound may be treated with one or more antifungal peptides disclosed herein alone, or in conjunction with one or more other pharmaceutically acceptable antimicrobial compounds, as well as surgical drains, bandages, etc. which may be conventionally used for treating wounds.

[0047] It is contemplated herein that a therapeutically effective amount of said one or more additional pharmaceutically acceptable agents for conventional use are familiar to one of skill in the art; amounts for use in the methods and compositions of the instant invention may also be readily determined by one of skill in the art according to conventional methods. In one embodiment, it is contemplated herein that therapeutically effective amounts of an additional pharmaceutically acceptable agent, e.g., a conventional antimicrobial, antifungal, or antiviral agent, may be reduced when administered in combination with one or more of the antifungal peptides disclosed herein (or vice versa). In addition, it is also contemplated herein that when said one or more additional pharmaceutically acceptable agents is administered in conjunction with one or more antifungal peptides disclosed herein, the agent may only need to be administered to a subject for a fraction of the time that said agent would typically need to be administered when administered alone (and vice versa).

[0048] As understood herein, “antifungals” for use in the methods and compositions of the instant invention include a variety of conventional topical and systemic agents that can kill, inhibit and/or otherwise control fungal growth. Such products are familiar to one of skill in the art and are available from a variety of commercial vendors, and include, but are not limited to antifungal drugs such as azoles, echinocandins, nucleoside analogs, and polyenes. Such compounds include, e.g.: tolnaftate; amorolfine; ciclopirox olamine; fluocytosine; griseofulvin; haloprogin; potassium iodide sodium pyrithione, undeconylic acid; bifonazole, butoconazole, clotrimazole, isocoumarone, toconazole, econazole, ketoconazole, miconazole, oxiconazole, sertaconazole, sulconazole, itraconazole, fluconazole, terconazole; voriconazole; naftifine, butenafine, and terbinafine. Antifungal antibiotics include amphotericin B, caspofungin, anidulafungin, micafungin, and nystatin. Therapeutically effective amounts for conventional use are familiar to one of skill in the art.

[0049] Similarly, “antibacterials” are products that can destroy or inhibit the growth of bacteria and are familiar to one of skill in the art. Antibacterial agents suitable for pharmaceutical use include a variety of agents, e.g., from groups such as penicillins, cephalosporins, glycopeptide derivatives, carbapenems, aminoglycosides, macrolides, tetracyclines, chloramphenicol, lincomycins, sulfonamides, metronidazole, pyrimidine derivatives, rifampin, and quinolones. In a particular embodiment, antibacterial agents for use in the methods and compositions of the instant invention include, e.g., amikacin, gentamicin, tobramycin, meropenem, imipenem, cefazolin, cefepime, cefoxitin, cephalothin, cefazidime, cefotaxime, cefoperazone, ceftriaxone, cefuroxime, levofloxacin, ciprofloxacin, nitrofurantoin, trimethoprim-sulfamethoxazole, linezolid, vancomycin, erythromycin, clindamycin, daptoxylin, mupirocin, ampicillin, piperacillin, oxacillin, penicillin, mezlocillin, amoxicillin, aztreonam, sulfoxazazole, chloramphenicol, streptomycin, tetracycline, minocycline, rifampin, and silver sulfadiazine. Such products are commercially available in a variety of forms from a variety of vendors, and therapeutically effective amounts for conventional use are familiar to one of skill in the art.

[0050] “Antiviral agents” contemplated for use in the methods and compositions of the instant invention include, e.g., a variety of commercially available pharmaceutical agents which can inhibit viral growth. These include, e.g., penciclovir, acyclovir, famciclovir, valacyclovir, tenofovir disoproxil fumarate, lamivudine, zidovudine, didanosine, emtricitabine, stavudine, nevirapine, abacavir, deltegravir, doravirine, darunavir, ritonavir, cobicistat, and efavirenz. Therapeutically effective amounts for conventional use are familiar to one of skill in the art.

[0051] In addition to the foregoing antimicrobial agents, one of skill in the art will appreciate that additional pharmaceutically acceptable agents include a variety of topical or systemic pharmaceutical agents which may be used to treat fungal and/or polybacterial infections. These include, but are not limited to, commercially available products that facilitate wound healing which are familiar to one of skill in the art, e.g., pharmaceutical formulations comprising chitosan, antisepsics, antioxidants, vitamins, minerals, debriding agents, irritants, hydrocolloids, amines, hydrofibers, sodium chloride gels, hydroactive pastes, zinc, silver and/or comprising cell proliferating agents such as growth factors, e.g., epidermal growth factor, keratinocyte growth factor, transforming growth factors, vascular endothelial growth factor, platelet-derived growth factor; collagen, biological dressings and skin equivalents, keratinocytes, fibroblasts, platelet-rich plasma, hone, curcumin, papain, and bromelain. Additional pharmaceutically acceptable agents for use in the pharmaceutical compositions and methods of the instant invention also include, but are not limited to, compounds that reduce pain, e.g., analgesics; anesthetics; and anti-inflammatory agents; compounds that are hemostatic agents, and compounds that are immunomodulators.

[0052] In addition, it is contemplated herein that the antifungal peptides of the instant invention could be used in combination with one or more fungal biofilm dispersal agents or inhibitors of biofilm formation. Such dispersal or inhibitor agents are familiar to one of skill in the art and include, but are not limited to substances such as nitric oxide, cis-2-decenonic acid, quorum sensing molecules such as farnesol, and enzymes such as DNase, β-glucanase, bromelain, and papain.

[0053] As discussed above, one of skill in the art will appreciate that the antifungal peptides of the instant invention may be administered alone, or in combination with one or more additional pharmaceutically acceptable agents,
therapeutic treatments or regimens discussed herein, in any manner or combination that may be deemed therapeutically effective, e.g., before, after, or concurrently with the antifungal peptides of the instant invention; separately in different formulations and dosage forms; at different times, and/or routes of administration, or in combination with the antifungal peptides in a single formulation.

[0054] Various compositions, formulations, and dosage forms designed to treat fungal infections in a subject in need thereof are contemplated herein, and may be created according to conventional methods by one of skill in the art. Indeed, it is contemplated herein that pharmaceutical compositions and dosage forms may be administered to a subject by a variety of routes according to conventional methods, including but not limited to parenteral (e.g., by intracutaneous injection and infusion techniques), intradermal, transmucosal, transdermal (including topical), ocular, intramuscular, intraperitoneal, intravenous, intra-arterial, intraleisional, subcutaneous, oral, and intranasal (e.g., inhalation) routes of administration. Administration can also be by continuous infusion or bolus injections. Such compositions, formulations, dosage forms, and methods of delivery may be suitable for treating fungal infections, e.g., on the skin, in the bloodstream, deep tissue, oral cavity, ocular cavity, gastrointestinal tract, urinary tract or any other location in a subject in which a fungal infection may be present. Controlled-release and timed-release dosage forms, e.g., comprising the use of microcapsules and other methodologies familiar to one of skill in the art, and including but not limited to controlled-release and timed-release formulations for topical application, are contemplated herein.

[0055] The term “dose”, “dosage”, “dosage form” and like terms used herein refer to physically discrete units suitable for administration to a subject, each dosage comprising a predetermined quantity of antifungal peptides as an active pharmaceutical ingredient calculated to produce a desired response. As contemplated herein, the pharmaceutical compositions of the instant invention are preferably sterile and contain an amount of the antifungal peptides in a unit of weight or volume suitable for administration to a subject.

[0056] The formulation and creation of dosage forms of the instant invention may be achieved by one of skill in the art using conventional methods. For example, the weight or volume of the composition administered to a subject will depend on the method of administration and is discernible by one of skill in the art. For instance, in the case of an injectable, the volume administered typically may be between about 0.1 ml and 1.0 ml, preferably approximately 0.5 ml. In addition, one of skill in the art will appreciate that, depending on the efficiency of release of a particular dosage form, the dosage amount loaded into a dosage form may be greater than the amount designed to be released and delivered to the subject in order to deliver a therapeutically effective amount of active agent(s). For example, this may be the case with dosage forms such as a gauze bandage, patch, or hydrogel.

[0057] Therapeutically effective amounts of the peptides may vary, and can be ascertained by one of skill in the art without undue experimentation. In particular embodiments, it is contemplated herein that a therapeutically effective amount of an anti-fungal peptide of the instant invention may range from about 6 μg/mL to about 5 mg/mL. For example, in various particular embodiments, based on in vitro efficacy (MICs and MFCs) and toxicity (hemolysis) data, it is contemplated herein that, about 6-100 μg/mL of Kn2-7 and/or dKn2-7 peptides may be suitable for systemic anti-fungal therapy (e.g., planktonic blood stream infections). In addition, with regard to topical therapy (e.g., planktonic and biofilms) and assuming minimal toxicity to skin cells at 5 μg/mL (Cao et al. (2012), PLoS ONE, 7(7):e40135), it is contemplated herein that about 6-500 μg/mL of dKn2-7 and/or about 12.5-1000 μg/mL of Kn2-7 may be used for anti-fungal therapy.

[0058] In additional various embodiments, MIC/MFC and hemolysis data for BmKn2 and dBmKn2 suggest that, for systemic (planktonic) infections, about 25-50 μg/mL BmKn2 and/or dBmKn2 could be used in vivo, while about 25-500 μg/mL dBmKn2 may be suitable for topical administration against planktonic and/or biofilm infections. Additional therapeutically effective amounts of the peptides for clinical use can be ascertained by one of skill in the art without undue experimentation.

[0059] Dosage forms include, in particular embodiments, dosage forms for topical administration to a subject in need thereof. These types of dosage forms are familiar to one of skill in the art and include, for example, dosage forms to be applied to the skin and/or for ocular administration. Dosage forms suitable for topical administration of the pharmaceutical compositions of the instant invention may be created by one of skill in the art using conventional methods. These include, but are in no way limited to, creams or ointments, or other topical pharmaceutical compositions, e.g., in the form of emulsion-gels. Topically acceptable carriers, excipients, and diluents for use in such formulations are familiar to one of skill in the art and include, e.g., aqueous phases, oily phases, emulsions, hydrogels, pastes, liposomal formulations, nanoparticle formulations, foams, powders, and spray-on formulations.

[0060] Dosage forms in the form of patches, films, and bandages comprising the antifungal peptides are also contemplated herein. Indeed, the short antifungal peptides disclosed herein do not require a tertiary structure to perform their microbicidal activity. Thus, the peptides can remain stable under inert, room temperature conditions, making them suitable for inclusion within a wound dressing with good performance and long shelf life.

[0061] Moreover, in a particular embodiment, it is contemplated herein that D-amino acid forms of the antifungal peptides may be used to increase stability of the peptides against proteases (fungal as well as proteases in wound exudate, blood, etc.) in these dressings and when used in other dosage forms.

[0062] Thus, in a particular embodiment, it is contemplated herein that the antifungal peptides of the instant invention may be incorporated in materials suitable for dressing wounds according to methods familiar to one of skill in the art. For example, the antifungal peptides disclosed herein may be used in the manufacture of antimicrobial dressings. In a particular embodiment, it is contemplated herein that these peptides can be electrospun into fibers by one of skill in the art according to conventional methods as a method to create antimicrobial dressings comprising these antifungal peptides. See, e.g., Heunis, T. D., & Dicks, L. M. T. “Nanofibers Offer Alternative Ways to the Treatment of Skin Infections” BioMed Research International, (Journal of Biomedicine and Biotechnology) Volume 2010 (2010), Article ID 510682, 10 pages; Heunis, T. D., et al. (2013) Antimicrobial Agents and Chemotherapy,
As discussed above, topical dressings and other dosage forms of the instant invention may comprise other pharmaceutically acceptable agents, including but not limited to, other pharmaceutically active antimicrobial agents, wound healing agents, analgesics, and/or anti-inflammatory compounds. In particular embodiments, such topical dressings and other dosage forms may be used, for example, to treat polymicrobial infections, e.g., bacterial-fungal polymicrobial infections, including but not limited to, infections that may be resistant to one or more conventional antimicrobial drugs.

Also contemplated herein are dosage forms that are liquid preparations and suspensions, including, preparations for parenteral, subcutaneous, intradermal, intramuscular, intraperitoneal or intravenous administration (e.g., injectable administration), such as sterile isotonic aqueous solutions, suspensions, emulsions or viscous compositions that may be buffered to a selected pH. In a particular embodiment, it is contemplated herein that the antifungal compositions of the instant invention are administered to a subject as an injectable, including but not limited to injectable compositions for delivery by intramuscular, intravenous, subcutaneous, or transdermal injection. Such compositions may be formulated using a variety of pharmaceutical excipients, carriers or diluents familiar to one of skill in the art.

Oral formulations for administration according to the methods of the present invention may include a variety of dosage forms, e.g., solutions, powders, suspensions, tablets, pills, capsules, caplets, sustained release formulations, or preparations which are time-released or which have a liquid filling, e.g., gelatin covered liquid, whereby the gelatin is dissolved in the stomach for delivery to the gut. Such formulations may include a variety of pharmaceutically acceptable excipients described herein, including but not limited to mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. A composition for oral administration may be a liquid formulation and may comprise a pharmaceutically acceptable thickening agent which can create a composition with enhanced viscosity which facilitates mucosal delivery of the peptide(s), e.g., by providing extended contact with the lining of the stomach. Such viscous compositions may be made by one of skill in the art employing conventional methods and employing pharmaceutical excipients and reagents, e.g., methylcellulose, xanthan gum, carboxymethyl cellulose, hydroxypropyl cellulose, and carboxomer.

Other dosage forms suitable for nasal or respiratory (mucosal) administration, e.g., in the form of a squeeze spray dispenser, pump dispenser or aerosol dispenser, are contemplated herein. Dosage forms suitable for rectal or vaginal delivery are also contemplated herein. The antifungal peptides and other active pharmaceutical ingredients in the compositions of the instant invention may also be lyophilized and may be delivered to a subject with or without rehydration using conventional methods.

In a particular embodiment, the dosage forms contemplated herein include field-deployable dosage forms. As used herein, “field-deployable dosage forms” include dosage forms that can be used in locations which are removed from a full-service clinic. These include, e.g., on the battlefield or other remote situations distant from military or other conventional healthcare systems. In a particular embodiment, a dosage form of the instant invention may be a topical wound dressing comprising one or more of the antifungal peptides of the instant invention. Such topical wound dressing may be manufactured in the form of a field-deployable dosage form such as a gauze, patch, film, bandage, powder, or wound packing product or filler such as foams, beads, pillows, and strands. The dosage form could also be a suture, wound irrigant, dry powder inhalant, or easy-to-use injection such as from an autoinjector. It is contemplated herein that in various particular embodiments, amounts of the peptides for topical use in a field deployable wound dressing may range from about 6-1000 µg/ml.

As understood herein, the methods of the instant invention include methods comprising administering a pharmaceutical composition to a subject in need thereof according to various regimens, i.e., in an amount and in a manner, and for a time sufficient to provide a clinically meaningful benefit to the subject. Suitable administration regimens for use with the methods of the instant invention may be determined by one of skill in the art according to conventional methods. For example, it is contemplated herein that a therapeutically effective amount of antifungal peptides may be administered to a subject as a single dose, or a series of multiple doses administered over a period of days. For example, a pharmaceutical composition of the instant invention may be applied topically at least once a day, but more frequent daily applications are contemplated herein.

The administrative regimen, e.g., the quantity to be administered, the number of treatments, and effective amount per unit dose, etc. will depend on the judgment of the practitioner and are peculiar to each subject. Factors to be considered in this regard include physical and clinical state of the subject, route of administration, intended goal of treatment, as well as the potency, stability, and toxicity of the particular composition. One of skill in the art will appreciate that in some cases, a “therapeutically effective amount” may encompass more than one administered dosage amount.

Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments, and examples provided herein, are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications can be made to the illustrative embodiments and examples, and that other arrangements can be devised without departing from the spirit and scope of the present invention as defined by the appended claims. All patent applications, patents, literature and references cited herein are hereby incorporated by reference in their entirety.

EXAMPLES

Example 1: Synthesis of BmKn2 and Kn2-7 Peptides Comprising D or L Amino Acids

[0071] Peptides comprising either L or D isomers were synthesized by GenScript (Piscataway, N.J., USA) and purified to homogeneity using reverse phase-high pressure liquid chromatography. Peptide structure was confirmed using electrospray ionization mass spectrometry.
As provided in the below examples, data indicate that the anti-fungal activity of BmKn2 and Kn2-7 is increased by converting the naturally occurring L-amino acids to D-forms. We hypothesize that this change may decrease the susceptibility of the peptides to proteases secreted by the fungi. Additionally, the in vivo bioavailability and efficacy may be improved by converting the amino acids in the peptides from L- to D-form. Thus far we have found that dKn2-7 has the most potent activity with minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) as low as 6.25 μg/mL and 12.5 μg/mL, respectively. We have also found that this peptide can completely inhibit the metabolic activity of pre-formed biofilms at concentrations between 62.5 and 125 μg/mL. This peptide demonstrates better activity compared to the well-studied LL-37 peptide, which has ~3x higher MIC against C. albicans.

Example 2: Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) Data for Candida albicans Treated with BmKn2, dBmKn2, Kn2-7, or dKn2-7 Peptides

Laboratory strains (MYA 2876 and ATCC 64124) (American Type Culture Collection, Manassas, Va., USA) and three clinical isolates (CA494, CA526, and CA2519) (San Antonio Military Medical Center, Joint Base San Antonio-Fort Sam Houston, Tex., USA) of C. albicans were tested. MICs were determined by treating planktonic cultures with various concentrations of the peptides for 24 hours at 37° C and then reading the absorbance of the samples at 600 nm. The MIC was the lowest peptide concentration that showed no absorbance reading above background (lack of growth). MFCs were determined by treating planktonic cultures with various concentrations of the peptides for 48 hours at 37° C, plating the samples on Sabouraud-Dextrose agar plates (Hardy Diagnostics, Santa Maria, Calif., USA), incubating the plates for 24 hours at 37° C, and visually inspecting the plates for fungal growth. The MFC was the lowest peptide concentration that showed no growth of fungal colonies. Overall, dKn2-7 showed the highest growth inhibition (lowest MICs) and fungicidal (lowest MFCs) activities compared to the other three peptides. Data is presented in Tables 1 and 2 below and represent the results of three independent experiments. Values are expressed in μg/mL.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>BmKn2</th>
<th>dBmKn2</th>
<th>Kn2-7</th>
<th>dKn2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA494</td>
<td>>100</td>
<td>>100</td>
<td>50-100</td>
<td>50-100</td>
</tr>
<tr>
<td>CA526</td>
<td>50-100</td>
<td>50-100</td>
<td>50-100</td>
<td>12.5-25</td>
</tr>
<tr>
<td>CA2519</td>
<td>50-100</td>
<td>25-50</td>
<td>25-50</td>
<td>12.5-25</td>
</tr>
<tr>
<td>MYA 2876</td>
<td>25-50</td>
<td>50-100</td>
<td>25-50</td>
<td>6.25-12.5</td>
</tr>
<tr>
<td>ATCC 64124</td>
<td>25-50</td>
<td>25-50</td>
<td>12.5-25</td>
<td>12.5-25</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th>BmKn2</th>
<th>dBmKn2</th>
<th>Kn2-7</th>
<th>dKn2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA494</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>CA526</td>
<td>50-100</td>
<td>50-100</td>
<td>50-100</td>
<td>25-50</td>
</tr>
</tbody>
</table>

Example 3: Time-Dependent Release of Calcein AM from MYA 2876 C. albicans Cells Treated with dKn27 or Melittin

Planktonic MYA 2876 cells were loaded with calcein AM fluorescent dye (ThermoFisher Scientific, Waltham, Mass., USA) for 2 hours, washed to remove free calcein AM, and then resuspended in fresh PBS. Cells were then treated with various concentrations of dKn2-7 or melittin (Sigma-Aldrich, St. Louis, Mo., USA), and calcein AM release from cells was monitored over 8 hours by fluorescence spectroscopy (λexc 485 nm; λem 530 nm) using a Tecan Spark 10M microplate reader (Tecan U.S., Morrisville, N.C.). Melittin is a known lytic peptide and was included as a positive control. Complete (100%) calcein AM release was determined by measuring the amount of calcein AM released from boiled cells. Cells treated with PBS alone were used as the vehicle control and are labeled as “Untreated Cells” in FIG. 1 and as “Control” in FIG. 9. A higher and more rapid release of calcein AM occurred at the lower concentration of dKn2-7, which is closer to the MIC (6.25-12.5 μg/mL), than at the higher concentration tested. Melittin showed a similar pattern. The results are provided in FIG. 1 and FIG. 9, which depict the same data graphed in two different ways. FIG. 1 depicts the results as raw fluorescence readings from the Tecan microplate reader in fluorescence units from the same experiment over a longer time period than FIG. 9, which depicts the results with emphasis on the first 4 hours and standardized to 100% release in boiled cells, i.e., as a percentage of total (100%) release from boiled cells. Thus, as depicted, 0% release is for cells treated with PBS alone (vehicle control). Data indicate that the peptides may have multiple mechanisms of fungal cell killing and the mechanism may be dependent upon the peptide concentration.

Example 4: Efficacy of dKn2-7 Against Planktonic C. albicans MYA 2876

The killing efficacy of dKn2-7 against planktonic C. albicans MYA 2876 over time was assessed. Briefly, planktonic cultures of MYA 2876 were treated with dKn2-7 in PBS for various durations up to 24 hours, and CFU assays to test viability were performed after treatment using methodology based on the teachings provided in Karlsson, et al. ACS Chemical Biology, Vol. 4 No. 7, pages 567-579 (2009), the contents of which are incorporated by reference herein. Data is depicted in FIG. 2 and represent the average of two independent experiments with triplicate samples for each treatment condition. For samples treated with a concentration of 100 μg/mL dKn2-7, no CFUs were detected after 60 minutes of treatment. In contrast, the controls and samples treated with 3.13 μg/mL dKn2-7 remained relatively constant over 4 hours of treatment and showed a 1-log reduction in CFUs at the 24-hour time-point. These data reveal that the majority of the cell population is dead after treatment with
1001 µg/mL of dKn2-7 for 60 minutes, even though complete release of calcein AM from cells was not observed (see FIG. 1 and FIG. 9). This finding suggests that dKn2-7 kills fungi via a mechanism that does not cause complete lysis of the cell membrane.

[0076] Because of a concern that the viability of cultures may have declined over time when PBS was used as the dosing solution vehicle, the time-kil experiment was repeated as described above, but using RPMI 1640 in place of the PBS as the dosing solution vehicle. Results of this experiment are depicted in FIG. 8, which includes data for 0 µg/mL, 3.13 µg/mL, 25 µg/mL, and 100 µg/mL dKn2-7. While a difference in results is evident when FIG. 2 and FIG. 8 are compared, data in FIG. 8 confirm the fungicidal activity of dKn2-7 against planktonic C. albicans MYA 2876 cultures.

Example 5: Efficacy of BmKn2, dBmKn2, Kn2-7 and dKn2-7 Peptides Against Pre-Formed C. albicans Biofilms

[0077] The viability of various C. albicans biofilms (CA404, MYA 2876, CA 2519, CA 526 and ATCC 64124) in the presence of BmKn2, dBmKn2, Kn2-7 or dKn2-7 peptides was measured using the XTT assay (Sigma-Aldrich, St. Louis, Mo., USA) 24 hours after treatment. Results are depicted in FIGS. 3-7, and indicate that dBmKn2 and dKn2-7 caused 100% reduction in biofilm viability in all 5 fungal strains, and dKn2-7 showed up to a 4-fold higher efficacy against the fungal biofilms compared to the other three peptides. This indicates the D-amino acid forms of the peptides may be more stable against biofilm proteases. We note herein that the ATCC 64124 strain is ketoconazole resistant, and thus the data in FIG. 7 suggest that these peptides have activity against this drug resistant strain of C. albicans.

Example 6: Confocal Microscopy of MYA 2876 C. albicans Biofilms Treated with dKn2-7

[0078] Pre-formed biofilms of MYA 2876 C. albicans were treated with dBmKn2-7 (500 µg/mL) or vehicle only for 24 hours. The biofilms were subsequently washed and stained with fluorophores propidium iodide, SYTO 9, and Calceo-White M2R (ThermoFisher Scientific, Waltham, Mass., USA), and confocal microscopy was performed.

[0079] Visualization of untreated biofilms showed a preponderance of SYTO 9 (green) staining with very little propidium iodide (red) staining, which indicates a high percentage of viable cells. In contrast, biofilms treated with 500 µg/mL dBmKn2-7 showed co-localization of SYTO 9 (green) and propidium iodide (red) fluorophores, resulting in a yellow/orange color distributed throughout the biofilm (data not shown). This is an indication of cell death, suggesting that treatment at this peptide concentration killed the pre-formed biofilm. These data complement the XTT data in FIG. 3, indicating that the biofilm is metabolically inactive after treatment with 500 µg/mL of dBmKn2-7. This co-localization behavior was absent for the untreated biofilm (data not shown).

Example 7: Prophetic Example of a Field-Deployable Dosage Form

[0080] An easy-to-use, field-deployable dosage form could be made out of the antifungal peptides disclosed herein, e.g., dKn2-7, dispersed within electrospun nanofibers synthesized from a single naturally occurring or synthetic biocompatible polymer such as but not limited to: poly(lactic acid), polyethylene vinyl acetate, poly(lactic-co-glycolic acid), polyethylene glycol, poly(epsilon-caprolactone-co-ethyl ethylene phosphate), polycaprolactone, polylysine, polyvinyl alcohol, polyvinylpyrrolidone, collagen, cellulose acetate, gelatin, elastin, chitosan, fibrinogen, dextran, laminin, and hyaluronic acid, or a mixture of these polymers. The peptide and polymer could be synthesized and dissolved in an appropriate sterile solvent such as N,N-dimethylformamide, methanol, or other appropriate solvent. The peptide solution could be mixed with the polymer solution to form a homogeneous solution. The solution containing the peptide and polymer mixture could then be electrospun into a nanofibrous dressing. This could be accomplished by adding the mixture to a syringe pump for continuous flow of the peptide/polymer solution which contains an electrode. The other electrode can be connected to a collecting device such as but not limited to: metal screen, plate, and/or wheel. Different fiber packing densities could be obtained through manipulation of the collection stage; in the case of the wheel, rotations per minute could be altered to obtain desirable outcomes. Dispersal of the solution onto the collection stage could be achieved by altering the electric field that is applied; i.e. changing the voltages at the syringe pump and the collector. This electric field can be altered to affect the material that is obtained.

[0081] A solution of one or more antifungal peptides, or a mixture composed of one or more antifungal peptides combined with one or more additional pharmaceutically acceptable agents, e.g., antifungal, wound healing agent, or pain relieving agent, could be used along with the polymer to synthesize the electrospun dressing, resulting in a multifunctional wound dressing. Also, a coaxial electrospinning system could be used to obtain nanofibers that have an inner core composition that differs from the exterior. In this approach, an inner core polymer could be used to add mechanical strength and the outer core polymer could be used to enhance biocompatibility. This core-shell synthesis approach could also be used to design an outer shell for an immediate, burst delivery and the inner core for more sustained delivery of the therapeutic, or for sequential delivery of two or more different therapeutics. Alternatively, two or more separate syringe pumps containing different solutions could be used simultaneously to electrospin a material that is composed of two or more unique nanofibers. This approach could be used to incorporate two or more types of polymers or therapeutics into one dressing, if the individual components cannot be mixed into one solution due to an incompatibility, such as a requirement for different solvents.

Example 8: Hemolysis Assay

[0082] The hemolytic activity of BmKn2, dBmKn2, Kn2-7, and melittin was assessed using human red blood cells (RBCs). The RBCs were prepared from human whole blood (BioreclamationIVT, Westbury, N.Y., USA) according to a previous report (Evans et al. J. Vis. Exp. (73), e50166, doi:10.3791/50166 (2013)). In brief, human whole blood was centrifuged, and the RBCs were washed with PBS 3-4 times and then diluted 1:20 of the original volume in PBS. Peptides at various concentrations from 0-400 µg/mL in PBS were mixed with an equal volume of the diluted RBCs in a 96-well microtiter plate and allowed to incubate for 1 hour.
at 37° C. The plate was then centrifuged at 500 g for 5 minutes and 100 µL of the supernatant was transferred to a 96-well, transparent, flat-bottomed plate. Sample absorbances were read at 490 nm using a BioTek Synergy HT plate reader (BioTek, Winooski, Vt.). PBS was used as a negative control (blank), and 1% Triton X-100 was used as a positive control for 100% hemolysis. The percent hemolysis for the unknown samples was calculated according to the following equation:

\[
\% \text{ Hemolysis} = \frac{\text{Abs}_{490} - \text{Abs}_{900}}{\text{Abs}_{900} - \text{Abs}_{490}} \times 100\%.
\]

[0083] Data presented in FIG. 10 depict 5 assays performed on different days using blood from different donors. Results indicate that hemolytic rates in untreated controls ranged from 2-3%. Melitin, a known cytolytic peptide, exhibited a significant increase in hemolysis compared to untreated controls at concentrations ≥3.125 µg/mL. BmKn2 and dBmKn2 started exhibiting a significant increase in hemolysis at 100 µg/mL. Kn2-7 and dKn2-7 started exhibiting an increase in hemolysis at 200 µg/mL, although these two peptides caused hemolytic rates of only 12-15% compared to hemolytic rates of ~100% observed for BmKn2, dBmKn2, and melitin at this dose. The concentration at which significant hemolysis was detected for Kn2-7 and dKn2-7, i.e., 200 µg/mL, is well above the range of minimum fungicidal concentrations (MFCs), i.e., 12.5-100 µg/mL, observed for these two peptides (see Table 2) against 6 of the 7 C. albicans strains. These results indicate that Kn2-7 and dKn2-7 should have a good safety profile and be less toxic than BmKn2 and dBmKn2 against red blood cells in vivo.

Example 9: Stability of Peptides in Human Serum

[0084] The stability of Kn2-7 and dKn2-7 (50 µg/mL) were studied in 25% human serum (v/v) (BioreclamationIVT, Westbury, N.Y., USA) in 1640 RPMI media (made with 165 mM MOPS, pH 7.0) or in 100% 1640 RPMI medium at 37° C. (H. Jenssen, S.I. Aspmo, Serum stability of peptides, Peptide-Based Drug Design (2008) 177-186.) At predetermined time points, 100 µL aliquots of each solution were removed and thoroughly mixed with 200 µL of 96% ethanol. This was incubated on ice for 15 minutes followed by centrifugation at 10,000 g for 5 minutes to pellet the precipitated proteins. The supernatant (200 µL) was carefully removed, spiked with peptide 1018 (VRILAVWRI-WRR; SEQ ID NO. 3) at 1 µg/mL as the internal standard, and stored at -20° C. prior to liquid chromatography-mass spectrometry (LC/MS) analysis. Peptide 1018 is a synthetic peptide derived from bactercin, a bovine neutrophil host defense peptide. (Mansour, S. C., et al. (2015) J. Pept. Sci., 21, 323-329. doi: 10.1002/jpsc.2708. The peptide sequence was synthesized by Genemed Synthesis Inc. (San Antonio, Tex.).

[0085] Liquid chromatography was performed on a Shimadzu HPLC system (Shimadzu Scientific Instruments, Inc., Columbia, Md.). A 10 µL aliquot of the sample was injected into an Agilent Zorbax Eclipse XDB 80 Å C18 (2.1 x 50 mm, 5 µm) column (Agilent, Santa Clara, Calif.) held at 40° C. Mass spectrometric analysis was carried out on an AB Sciex API 4000 mass spectrometer (AB Sciex, Framingham, Mass.) with an electrospray ionization (ESI) interface and triple quadrupole mass analyzer. The peak areas of Kn2-7 and dKn2-7 on the LC-MS chromatograms were standardized to the peak area for peptide 1018.

[0086] Data are presented in FIG. 11 as a percent of the values at time=0 hour (t0), which were set to 100%, and represent the average and standard deviation of 3 individual experiments. Results indicate that the amounts of Kn2-7 and dKn2-7 in 100% culture medium were reduced by about 20% at 24 hours, with no clear difference between the L- and D-forms. In 25% serum, dKn2-7 was present at significantly higher levels than Kn2-7 at both 4 and 24 hours, suggesting that the D-form is more stable in the presence of serum than the L-form. About 43% of dKn2-7 and only about 9% of Kn2-7 remained in the samples after 24 hours in 25% serum. This indicates that using D-amino acids does stabilize the peptide against proteolytic degradation, and dKn2-7 should have greater stability than Kn2-7 against serum proteases in vivo.
What is claimed is:

1. A method of treating a fungal infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising one or more peptides selected from the group consisting of BmKn2, dBmKn2, Kni2-7, and dKn2-7.

2. A method of treating a polymicrobial infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising one or more peptides selected from the group consisting of BmKn2, dBmKn2, Kni2-7, and dKn2-7.

3. The method of claim 1 wherein the peptides comprise D-form amino acids.

4. The method of claim 2 wherein the polymicrobial infection comprises a fungal infection.

5. The method of claim 1 wherein the fungal infection is a planktonic or a biofilm fungal infection, or a combination thereof.

6. The method of claim 5 wherein the biofilm fungal infection comprises a pre-formed biofilm.

7. The method of claim 1 wherein the fungal infection is resistant to one or more conventional antifungal agents.

8. The method of claim 1 wherein the infection is a wound infection.

9. The method of claim 1 wherein the pharmaceutical composition is administered alone, or in combination with a therapeutically effective amount of one or more additional pharmaceutically acceptable agents.

10. The method of claim 9 wherein the one or more additional pharmaceutically acceptable agents is selected from the group consisting of an antimicrobial agent, an analgesic, a wound healing agent, a biofilm dispersal agent, and a biofilm inhibitor agent.

11. The method of claim 10 wherein the antimicrobial agent is selected from the group consisting of an antifungal agent, an antibacterial agent, and an antiviral agent.

12. A pharmaceutical composition comprising one or more peptides selected from the group consisting of Kni2-7, dBmKn2, Kni2-7, and dKn2-7, wherein said pharmaceutical composition further comprises one or more pharmaceutically acceptable carriers, excipients or diluents, and wherein said one or more peptides are present in an amount sufficient to treat a fungal infection in a subject in need thereof.

13. The pharmaceutical composition of claim 12 wherein said amount sufficient to treat a fungal infection in a subject in need thereof is from about 6 µg/mL to about 5 mg/mL.

14. The pharmaceutical composition of claim 12 further comprising one or more additional pharmaceutically acceptable agents.

15. The pharmaceutical composition of claim 14 wherein the one or more additional pharmaceutically acceptable agents is selected from the group consisting of an antimicrobial agent, an analgesic, a wound healing agent, a biofilm dispersal agent, and a biofilm inhibitor agent.

16. The pharmaceutical composition of claim 15 wherein the antimicrobial agent is selected from the group consisting of an antifungal agent, an antibacterial agent, and an antiviral agent.

17. A dosage form comprising the pharmaceutical composition of claim 12.

18. The dosage form of claim 17 wherein said dosage form is designed for topical administration.

19. The dosage form of claim 18 wherein said dosage form designed for topical administration is a wound dressing.

20. The dosage form of claim 19 wherein the wound dressing is a field-deployable wound dressing.